

Project co-funded by the Horizon 2020

Programme of the European Union

Deliverable: 3.6

Open Plug-and-Produce

Manufacturing Service Bus

Deliverable Responsible: Introsys, SA

Version: 0.5

14/07/2016

Dissemination level

PU Public X

PP
Restricted to other programme participants (including the Commission

Services)

RE
Restricted to a group specified by the consortium (including the

Commission Services)

CO
Confidential, only for members of the consortium (excluding the

Commission Services)

Ref. Ares(2017)3605605 - 17/07/2017

2.

Project Information

Acronym openMOS

Name Open dynamic manufacturing operating system for

smart plug-and-produce automation components

Theme FOF-11-2015: Flexible production systems based

on integrated tools for rapid reconfiguration of

machinery and robots

Grant agreement 680735

Start date 1, October 2015

Duration 36 months

Contact Information

Company Name Introsys – Integration for Robotic Systems, SA

Address Estrada dos 4 Castelos, Lote 67

2950-805 Quinta do Anjo

E-Mail info@introsys.eu

Phone +351 212 951 499

Fax +351 212 893 000

3.

Version Control

Version Date Change

0.1 12/06/2017 Initial draft and document structure.

0.2 22/06/2017 Section 2 and 3

0.3 26/06/2017 Section 1, 4, 5 and 6

0.3.1 03/07/2017 Tables Filled on 3.4.2 and Conclusion

0.4 07/07/2017 Merger reviews of the document

0.5 11/07/2017 Added Section 5.4

List of Authors

Name Role Affiliation Email

André Silva Author Introsys, SA andre.silva@introsys.eu

Fábio Miranda Author Introsys, SA fabio.miranda@introsys.eu

Magno Guedes Author Introsys, SA magno.guedes@introsys.eu

Eugen Meister Reviewer Elrest, DE meister@elrest.de

Pedro Ferreira Reviewer
Loughborough

University
p.ferreira@lboro.ac.uk

Kirill Dorofeev

Reviewer Fortiss dorofeev@fortiss.org

mailto:p.ferreira@lboro.ac.uk

4.

Table of -Contents

1. Introduction .. 8

1.1. Document structure .. 8

1.2. Analysis of requirements overview ... 9

1.3. Assessment of current Service Bus Technologies overview 9

2. System Context ... 10

3. System Design ... 11

3.1. General Architecture Description ... 11

3.2. Sequence Diagrams ... 13

3.2.1. Device Registration ... 13

3.2.2. Recipes Execution .. 16

3.2.3. Agents Platform Communication .. 19

3.3. Data management ... 22

3.4. Interfaces ... 22

3.4.1. Class Diagram (main modules) .. 23

3.4.2. Specification .. 28

4. User interface .. 32

5. System Deployment .. 34

5.1. Requirements .. 34

5.2. Dependencies .. 34

5.3. System configuration .. 34

5.4. Step-by-step installation process .. 35

6. Conclusions and Future Work ... 39

7. References ... 40

6.

List of Acronyms

API: Application Programming Interface: Set of routines used to interface software and applications.

MSB: Manufacturing Service Bus: Middleware developed in the openMos context.

AC: Agent Cloud: Cloud platform where the agents reside.

AD: Agent Database: Cloud instance of the openMOS database for redundancy and high availability.

KPI: Key Performance Indicator: A measurable value of efficiency.

HMI: Human Machine Interface.

GUI: Graphical User Interface.

LDS: Local Discovery Server. Server discovery functionality for locally hosted OPC UA servers.

DDS: Data Distribution Service. An Object Management Group (OMG) standard for M2M communication

OPC UA: OPC Unified Architecture. The new generation of OPC M2M communication protocol.

CPAD: Cyber Physical Agent Description: A virtual representation of the device adapter used by the

agent cloud.

SOAP: Simple Object Access Protocol. A protocol for exchanging structured data.

FIFO: First In First Out: A method of accessing a data pule.

CRUD: Create, Read, Update and Delete: Basic database operations.

MQTT: Message Queuing Telemetry Transport. A standard for M2M messaging communication.

REST: Representational state transfer. An architectural model for web applications and protocols.

MOS: Manufacturing Operating System.

FIFO: First In First Out. Represents how the data is processed by the program.

XML: eXtensible Markup Language. It’s a markup language used to exchange data using a set of rules.

JRE: Java Runtime Environment.

AML: Automate Markup Language.

7.

11.

3. System Design
3.1. General Architecture Description

According to the decisions taken within the consortium and presented in [2], the MSB is

arranged in three big models: (a) the Network Interface, (b) the Core (logical layer) and (c) the

Database Interface.

The Network Interface module implements all the required protocols for communication

with the openMOS devices, the AC and the AD. In [4] the protocols that best fit the openMOS

project were identified, being the SOAP [5] and WebSockets [6] protocols selected for data

exchange with the cloud platforms and the OPC UA [7], DDS [8] and MQTT [9] for

communication with the device adapters. Each protocol has its own architecture and

implements different mechanisms for communication. The MSB integrates these protocols and

implements a common interface that enables the different openMOS devices to seamlessly

communicate with the rest of the openMOS network. All the openMOS devices have the

capability to register in the MSB using any of the supported protocols, even if the protocol

does not support this mechanism natively (e.g., DDS). After the device has been registered to

the MSB, it can exchange data (e.g., KPIs) and receive calls to trigger its skills through the

execution of recipes. This workflow can be seen in more detail in Section 3.2 of this report.

Whenever a new device adapter is registered, it exposes its skills to the MSB through the

exchange of the recipes list that can be executed (its execution table), so the MSB knows which

calls to make upon a product request. Upon registration, the MSB creates a virtual

representation of the device in the AC through the use of webservice calls that allow the

creation of new agents (resource or transport), as specified in D4.1. This information is

continuously updated via the exchange of messages using WebSockets.

The Core module is responsible for managing all the connected devices and to ensure

the correct execution of the recipes associated with the product defined by the operators in

the Human Machine Interface (HMI). When the MSB receives a request to execute a product

order it evaluates which device has the capability to execute the product requirements (which

can be recipes that trigger both atomic and composite skills) and call each one sequentially

through the execution table.

Finally, the Database Interface acts as a proxy that behaves also as a local cache

between the openMOS devices and the Agent and Data Cloud platforms, meaning that, all the

data collected from the openMOS devices through the MSB is stored locally for redundancy

purposes and then sent to the Cloud Platforms whenever possible, in a FIFO manner. This

prevents loss of data and ensures the continuous operation of the system. After the data is

sent to the Cloud Platforms is removed from the MSB local storage. The Database Interface

also stores information about the devices locally (e.g., device ID, communication protocol,

recipes available), to be used by the Core module for managing the openMOS devices

connected to the MSB.

In the Figure 2 the MSB architecture can be consulted for visual aid of how the different

components relate and interact with each other.

22.

3.3. Data management

Two data management mechanisms are implemented inside the MSB. The first

comprises a persistent local database and a synchronization service, while the second consists

on a set of volatile data structures used for runtime data processing.

The local database is used for storing network topological information such as Device

Adapters' related data (e.g., device ID, protocol, address) and in conjunction with the

synchronization service, acts as a cache for temporary storing data, retrieved from the Device

Adapters, in case of loss connection with the Cloud Database, using a FIFO implementation.

The volatile data structures are used to load information about the available recipes and

execution tables needed by the MSB to match the requirements for the requested product

recipe with the device adapter level recipes. Whenever a device adapter registers itself in the

MSB, the list of the provided recipes is instantiated in these structures, meaning that, in case

of failure in the MSB, the devices must be registered again in order to provide the latest

recipes list as well as their self-description information. All the data exchange between the

MSB and Device adapter follow the structure defined by the AML.

3.4. Interfaces

The MSB has a total of 124 Java classes and accounts with more than 685 functions and

methods. In this section, the main software components are explained with more detail, giving

a better overview of the followed implementation strategies. For a complete detailed

description of the implemented classes and methods, please refer to the Javadoc

accompanying the MSB source code. The main classes and methods are exposed through Class

Diagrams and a brief explanation of their functionality and interaction with other modules. The

communication interfaces are detailed using tables with information about inputs and outputs,

since they are responsible to expose the MSB functionality and interact with the other system

components.

28.

3.4.2. Specification

The following tables detail the main methods used for integrating with the remaining

openMOS system.

[OPC UA]

Function generalMethod Owner MSB

 Name Type Description

In
function String

Name of the function to be called in the core
module

In args String sender:xml

Out feedback String Data to be return by the method call

Description

The general method acts like a proxy to call other functions. The function to
be called is passed in the function parameter and its arguments in the args
parameter. The feedback parameter is used to return the final status of
execution.

Function <recipes to be executed> Owner Adapter

 Name Type Description

In N/A N/A N/A

Out N/A N/A N/A

Description
For each recipe, an OPC UA method is created providing a mechanism for
triggering the recipe execution.

Function sendServerUrl Owner MSB

 Name Type Description

In serverUrl String Server address endpoint

Out feedback String Feedback of the operation

Description
Used to send the MSB OPC UA Server endpoint address to the device adapter,
in order to perform its registration.

29.

Function SendRecipesMethod Owner MSB

 Name Type Description

In newConfiguration String/XML New configuration with approved recipes

Out feedback String Data to be returned by method call

Description
Used to send user-approved recipes from the HMI to the respective device.
The new configuration is sent as argument.

[DDS]

Function generalMethod Owner MSB

 Name Type Description

In message GeneralMethodMessage
Message composed by device ID,
function name, function args and
feedback

Description
The generalMethod topic implements the same logic as the one implemented
by the OPC UA protocol, in fact, uses the same interface.

Function <topics to be called> Owner Adapter

 Name Type Description

In
message StringMessage

Message composed by device ID and
simple text argument.

Description
For each recipe or function exposed by the adapter, a topic using this type of
message is created, enabling the MSB to invoke its execution.

[Agent Cloud - WebSockets]

Function <heart beat>

 Name Type Description

In msgTypeLifeBeat String A life beat message.

Out feedback String Message sent status

Description Websocket message exchange to check communication status.

30.

Function <sendData>

 Name Type Description

In msgTypeExtractedData
+DeviceData

Xml Information about recipe execution
(KPIs, etc.)

Out feedback String Message sent status

Description
The MSB send updates about the physical system (recipe execution from
devices) using this method. This information is used to update the Optimizer
Agents algorithm.

Function <new location>

 Name Type Description

In msgTypeNewLocation+locationInfo Xml Information about Transport
Agent location

Out feedback String Message sent status

Description
The MSB send updates about the physical location of the transport devices
using this method. This information is used to update the Transport Agent
location.

Function <applied recipes>

 Name Type Description

In msgTypeAppliedRecipes+recipeIDs String Information about active
recipes

Out feedback String Message sent status

Description
The MSB send updates about the active recipes on the devices using this
method. This information is used to update the AC about the set of recipes that
are active on the hardware.

[Agent Cloud - SOAP]

Function acceptNewOrder

 Name Type Description

In newOrder Order Information regarding the requested product,
used to describe a Product Agent.

Out orderStatus OrderStatus Operation status for new order submission

Description
Webservice for requesting a new order, exposed by the AC and called by the
MSB upon a new order from the HMI.

31.

Function sendRecipes

 Name Type Description

In deviceName String Identifier of the target device.

In mode int Recipe suggestion mode.

In recipes List<Recipe> List of recipes to be sent.

Out operationStatus OrderStatus Operation status for new order submission.

Description
Webservice for deploying a recipe, exposed by the MSB and called by the AC
upon a new recipe optimization suggestion.

Function CreateNewAgent

 Name Type Description

In cpad CyberPhysicalAgentDescription Information regarding agent
and the device that it
represents (uniqueName,
agentParameters, skills,
recipes, etc.).

Out agentStatus AgentStatus Status for agent creation and
removal operations.

Description
Webservice for creating a new agent (resource or transport type), exposed by
the AC and called by the MSB upon device registration.

Function RemoveAgent

 Name Type Description

In agentID String Agent unique ID.

Out agentStatus AgentStatus Status for agent creation and removal
operations.

Description
Webservice for removing an agent, exposed by the AC and called by the MSB
upon device removal.

